

Отражающие свойства плазмы для ракетных выхлопов (λ = 23 см и метровый диапазон)

1. Физика отражения от плазмы

Плазма ракетного выхлопа — это ионизированный газ (температура ~3000–4000 К), содержащий:

- Электроны (основной вклад в отражение радиоволн),
- Алюминиевые частицы (Al₂O₃ от твёрдого топлива, усиливают рассеяние).

Механизм отражения:

- Для λ = 23 см (L-диапазон, 1.3 ГГц):
 - Электроны в плазме колеблются в поле волны, переизлучая энергию (томсоновское рассеяние).
 - \circ Критическая плотность электронов n_e для отражения:

$$n_e = rac{4\pi^2\epsilon_0 m_e f^2}{e^2} pprox 10^{15} \, \mathrm{M}^{-3} \, ($$
для 1.3 ГГц)

- \circ Выхлоп Бука (форсаж) достигает $n_e \sim 10^{16} 10^{17} \,\mathrm{M}^{-3} \to$ плазма отражает как металл.
- Для метрового диапазона (λ = 1−2 м, VHF):
 - \circ Критическая плотность n_e падает до 10^{13} – 10^{14} м $^{-3}$.
 - \circ Даже слабоионизированный выхлоп ($n_e \sim 10^{14} \, \mathrm{M}^{-3}$) становится **полностью отражающим**.

2. ЭПР плазмы для "Ракета + стартовая плазма" (метровый диапазон)

Параметры плазменного шлейфа:

- **Размеры**: ~1 м (диаметр) × 3-4 м (длина),
- Плотность электронов: $10^{16} \,\mathrm{M}^{-3}$ (пик при старте),
- **Частота радара**: 150–300 МГц (типично для VHF РЛС, например, П-18).

Расчёт ЭПР:

1. Геометрическое сечение плазменного шлейфа:

$$\sigma_{geom} \approx \pi r^2 = 0.8 \,\mathrm{M}^2 \,\mathrm{(для} \;\mathrm{r} = 0.5 \,\mathrm{M}\mathrm{)}$$

- 2. **Коэффициент отражения** R:
 - \circ Для $n_e > n_{crit}$: $R \approx 1$ (полное отражение).
- 3. Эффективная ЭПР:

$$\sigma_{\text{плазма}} = \sigma_{geom} \cdot R \cdot \text{интерференционные эффекты} \approx 5-15 \,\text{м}^2$$

Суммарная ЭПР (ракета + плазма):

- Метровый диапазон: 10-20 м² (из-за резонансных эффектов на длинных волнах).
- Пики до 30 м² при совпадении длины волны с неоднородностями плазмы.

3. Сравнение с 23-см диапазоном

Параметр $\lambda = 23$ см (L-диапазон) $\lambda = 1-2$ м (VHF)

Критическая n_e $10^{15} \,\mathrm{m}^{-3}$ $10^{13} \,\mathrm{m}^{-3}$

ЭПР плазмы 1–5 м² 10–30 м²

Глубина проникновения Малый скин-слой (~см) Большой (~м)

Чувствительность к плазме Умеренная Очень высокая

Пример для МН17:

• Если пуск Бука фиксировался VHF-радарами (например, украинским П-18), его стартовая плазма давала **ЭПР ~20 м²** — легко обнаружимо.

• В L-диапазоне (23 см) сигнал был слабее (~3–5 м²), что объясняет пробелы в данных.