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I. NOMENCLATURE 

The Proportional Navigation 
Dilemma-Pure or True? 

U. S. SHUKLA 

I? R. MAHAPATRA 
Indian Institute of Science 
India 

Iko generic classes of proportional navigation (PN) laws 
are conlpared in detail. One class consists of pursuer velocity 
referenced system which includes pure proportional navigation 
(PPN) and its variants and the second category consists of 
line-of-sight (LOS) referenced system such as true proportional 
navigation (TPN), generalized true proportional navigation 
(GTPN) and generalized guidance laws. The existing closed-form 
solutiom are discussed in detail while summarizing the classical 
linear and quasilinear analytical solutions. A critical comparison 
is then made with regard to their definition, implementation, 
analytical aspects including the method and the nature of solution, 
and more importantly, an appraisal of the behavior of the pursuer 
motion resulting from these guidance laws. It is established that 
in spite of some restricted advantages in the solvability of the 
equations of motion, the LOS-referenced PN schemes suffer from 
serious Limitations in t e r m  of implementation and trajectory 
behavior. Among the major drawbacks are forward velocity 
variation requirement (requiring use of thrusters; inlplementation 
not possible in aerodynamically controlled pursuers), relatively 
large control effort requirement, restrictions on initial engagement 
condilions to ensure intercept, lack of robuslness and possibility 
of unbounded acceleration. This leads to the firm conclusion that 
PPN is the n ~ r e  “natural” guidance law in a practical sense as 
compared with TPN and its generalizations. Thus, although most 
of the analytical effort hitherto appears to have been concentrated 
on TPN and its generalizations, m r e  serious effort needs to be 
made to understand, model, and solve the PPN guidance scheme. 
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Lateral Acceleration. 
Navigation constant. 
Effective navigation constant. 
Velocity. 
Cumulative velocity increment. 
Range from pursuer to target. 
Time. 
Angle between pursuer velocity vector 

and reference line. 
Heading error relative to collision course. 
Pursuer heading angle. 
Angle of line of sight (LOS) relative to 

Angle between target velocity vector and 

Incremental rotation of target velocity vector 

Normal turn rate of the target. 

reference line. 

reference line. 

from its initial direction. 

Subscripts 

M 
PPN 
TPN 
T 
1 

f 
R 
Ri 

0 
8; 
$ 

Pursuer. 
Pure PN. 
True PN. 
Brget. 
Initial values. 
Final value (at intercept). 
Relative closing (velocity) along line of sight. 
Initial relative closing (velocity) along 

Normal to line of sight. 
Initial normal to line of sight. 
Normal to pursuer velocity vector. 

line of sight. 

II. INTRODUCTION 

Many of the currently operational tactical guided 
missiles employ proportional navigation (PN) as the 
guidance law for terminal guidance. Surface-to-air, 
air-to-air, and air-to-surface missile engagements, 
“stand off” weapon delivery as well as space 
applications such as rendezvous use PN in one form or 
another as a guidance law [l]. For an aerodynamically 
controlled missile the PN law may be considered as the 
optimal pursuit strategy in the sense of minimizing the 
terminal miss distance [2]. 

durability as a favored guidance scheme during the last 
few decades, is its relative simplicity of implementation 
in practical systems. For implementation, it requires 
low levels of information input regarding the target 
characteristics (including motion) compared with 
many other more elaborate schemes, thus simplifying 
onboard sensor requirements and improving reliability 

A major advantage of PN, contributing to its 
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and robustness. The scheme is based entirely on the 
instantaneous direction of the target relative to the 
pursuer in space, and its first derivative with respect 
to time (a second derivative may be utilized in certain 
augmented PN schemes). These quantities are easily 
sensed using active or passive microwave, infrared, 
optical or acoustic trackers, and the basic PN scheme 
consists in applying to the pursuer a control force 
(through control surface deflections or control thruster 
operation) proportional to the rate of rotation of the 
line of sight (LOS) and acting along a direction defined 
by the specific variant of PN employed. 

In view of the importance of the PN law in the 
missile guidance and space applications, considerable 
analytical study has been made regarding the behavior 
of projectiles under the PN pursuit law. Since the 
differential equations governing PN motion, even 
considering kinematics only, are highly nonlinear, only 
limited success has been achieved in solving these 
equations. In attempting to solve the PN equations, 
approaches have been made hitherto along two 
principal directions. The prime difference between 
these two directions arises from the way PN is 
defined. While one set of definitions leads to a class 
of laws consisting of pure proportional navigation 
(PPN) and its variants, which are referenced relative 
to the pursuer velocity vector, the other class 
has LOS referenced laws like the true proportional 
navigation (TPN) and its generalizations as its 
members. 

From the point of view of mathematical analysis, it 
has been possible to solve the LOS-referenced laws in 
closed form (though the solutions are mostly implicit 
in nature) for at least the nonmaneuvering target case. 
In contrast, PPN has been solved in closed form, for 
the nonmaneuvering target case, only for the less 
useful discrete values 1 and 2 of N ,  the navigation 
constant. It would thus appear that the TPN has an 
edge over PPN in terms of mathematical tractability. 
This may be the reason that a number of papers have 
appeared in the literature dealing with the solution of 
the ‘IT” problem [3] and its generalizations such as 
the generalized true proportional navigation (GTPN) 
[4, 51 and the generalized guidance law [6]. 

It is shown in this paper that notwithstanding 
the relative difficulties in solving the PPN problem, 
PPN is the most “natural” PN law. This conclusion is 
drawn based on the facts that the LOS-referenced laws 
are not practically implementable, require forward 
acceleration/deceleration, are inefficient in terms of 
control effort, lead to severe constraints on the initial 
engagement geometry to ensure acceptable trajectory 
behavior and intercept and are thus less robust. Also, 
the relative analytical advantage of LOS-referenced PN 
laws does not appear sustainable as more realistic PN 
scenarios are analyzed. 

PURE PROPORTIONAL NAVIGATION 

/ 

A M  J L Y T  VM 

- - - - - - - 
M 

TRUE PROPORTIONAL NAVIGATION 

GENERALIZED TRUE PROPORTIONAL NAVIGATION 

Fig. 1. Geometries of the three variants of PN. 

Ill. DEFINITIONS 

Early studies of PN [7, 81 treat the PN strategy as 
one in which the guided point (pursuer) moves towards 
a target point in a plane containing the velocity vectors 
of the two points, and define the strategy such that 
the velocity vector (heading) of the pursuer is rotated 
at a rate proportional to the rotation rate of the line 
joining the pursuer and the target (line of sight). A 
later development in the PN definition has been 
to make the lateral acceleration of the pursuer 
vary in proportion with the rate of rotation of the 
LOS. 

Although the basic PN principle establishes the 
magnitude of the lateral acceleration (or control force) 
in relation to the LOS turn rate, slightly different 
definitions of PN are possible depending on the 
direction of application of this acceleratiordforce. 
Three different types of PN [3, 4, 91 are defined: the 
PPN, the TPN, and the GTPN. 

(proportional to LOS turning rate) is applied normal 
to the velocity vector of the pursuer. In TPN, the 
control force is applied normal to the instantaneous 
LOS. Finally in GTPN, the missile acceleration is not 
necessarily applied normal to the LOS but must have 
a fixed angle relative to it. The three schemes are as 
shown in Fig. 1. 

In PPN, the desired lateral acceleration 
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PURE PROPORTIONAL NAVIGATION 

M 

TRUE PROPORTIONAL NAVIGATION 

Fig. 2. Target-pursuer vector geometry. 

The equations of motion of the pursuer are written 
in vector form as 

dLr  
F = m-. 

dt2  
As shown in Fig. 2, a unit vector triad (e , ,Q,ek)  is 

constructed with its origin at the target, e, aligned with 
the LOS and ek normal to the plane of vehicle velocity 
vectors. The rotation of (e,,ee,ek) triad with respect to 
an inertial reference (taken as the initial direction of 
target motion) is 

Then, from kinematics of a point in a rotating frame 

R = 8ek. (2) 

r = re, (3)  
d r  
- = re, + s2 x r 
dt (4) 

d2r 
- = f e r + R x r + R x ( R x r ) + 2 S 1 x r  ( 5 )  
d t2  

= (i: - rd2)e, - ( re  + 2 r d ) ~ .  (6) 
F, the applied force on the pursuer, is assumed to be 
the only control force. 

force along and normal to the LOS 
Considering TPN first, and resolving the applied 

= Fee0 + F,e, 
F 

AM = - m (7) 

= Ae8ee + A,8er, using the definition of PN. 

(8) 
For GTPN, if y is the constant angle between the 

direction of the applied pursuer acceleration and the 
direction normal to the LOS, then [4] 

A, = XVe,siny and A0 = -XVR;COS~ (9) 

where the subscript i denotes the initial value and X is 
the navigation constant. 

Fig. 3. Geometry of planar pursuit against maneuvering target for 
PPN. 

For TPN, y = 0 and hence 

A, = O  and A0 =-XVR; (10) 

AMM(TPN) = - XVR;&e. ( 1 1 )  

Next, considering PPN, the control force is applied 
normal to the pursuer velocity vector and hence 

where 6, is the pursuer turn rate. From the definition 
of PN 

A ~ ( p p ~ 1  = NVM8e+. (13) 

6, = N e .  (14) 

Using (12) and (13) 

Equation (14) corresponds to the original natural 
definition of PPN relating the pursuer turn rate to the 
LOS rate through a constant [7]. 

Having outlined two basic ways of defining the PN 
law, one through the desired pursuer turn rate and the 
other through the applied control force, and having 
shown the equivalence of the two for the PPN strategy, 
we now proceed to review the mathematical basis of 
the formulation for the various types of PN. 

IV. PURE PROPORTIONAL NAVIGATION 

We consider the general case of a planar pursuit 
against a maneuvering target depicted in Fig. 3. The 
target T and the pursuer M are considered to be 
geometric points with constant velocities VT and VM 
and normal accelerations AT and A M ,  respectively. 
The pursuit is described in a coordinate system 
centered at T and with respect to a reference line 
parallel to the initial direction of VT. The target 
acceleration AT is assumed constant. 

velocity V ,  along and normal to the LOS, we obtain 
Resolving the target velocity VT and the pursuer 

P = VT cos(8 - p) - VM cos(8 - 4) (15) 
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and 
re = -VTsin(8 - p) + VM sin(8 - $) (16) 

where 

p = Rt (17a) 

K = AT/vT (17b) 
and K represents the normal turn rate of the target. 
The definition (14) of PPN, i.e. 4 = N e ,  can be 
integrated to give 

available for these equations for any value of the 
navigation constant N .  These general equations reduce 
to (28) and (29) for the case of a nonmaneuvering 
target. Although there is still no closed-form solution 
available even for this simpler case for general values 
of N ,  exact solutions have been obtained in the 
literature [7] for the two particular values of N = 1 
and N = 2 only. These solutions are discussed in the 
following section. 

8 -$I = b8 - c A. Special Analytical Solutions of Pure Proportional 
(18) Navigation 

where 
For the case of a nonmaneuvering target, dividing 

1 d r  - 
r de Ve(e)' 

b = l - N  and c = $ ; - N 8 ;  (19) (28) by (29) 
-- _ _  Substituting (18) in (15) and (16), we obtain 

and 
re  = -VTsin(O - p) + VM sin(b8 - c). (21) (33) 

L '  Defining the radial (i.e., along LOS) and normal 
components of the pursuer-target relative velocities 
as 

muation (33) Provides 
integral appearing here, with VR and V, replaced from 
(30) and (31), respectively, is not solvable in general. It 
can be performed only in two particular cases: N = 1 
and N = 2. 

pursuit course: deviated pursuit in general and pure 
pursuit when 4; = 8;, i.e., when the pursuer velocity 

as a function Of 8* The 

(22) VR(8, t) = V T  COS(8 - p) - V, cos(b8 - c )  

and The case N = 1, in fact, reduces PPN to the simple 

Ve(8,t) = -VTsin(8 - p)  + VM sin(b8 - c )  (23) 
(20) and (21) can be written, respectively, as 

iector is initially directed toward the target position. 
For simplicity, we quote the solution for the pure 

P = VR(8,t) (24) pursuit course only [7]: 

and 
re = Ve(8,t). 

For the nonmaneuvering target case (AT = O), (20) where p = V M / ~ T .  
The solution corresponding to N = 2 has been 

derived by Locke [7l in terms of the angle $ between 
the LOS and the pursuer velocity vector: 

and (21) reduce to 

P = VT C O S ~  - V, COS(b8 - C) 

re  = -VTsinO + ~Msin(b8 - c )  

(26) 

(27) r = ri 
psin$ + - 

(PZ-l)/(p2+2pc~ai+l) 

psin9; + sin($i - a;)  1 
I 

[ 
X exP [ 

sin8i + psin(8; + c )  1 

(35a) 
2p($i - 9)sinai 

and 

respectively. Here, the radial and normal components 

p2 + 2pcosa; + 1 
of the relative velocity can be defined as 

P = V R ( ~ )  (28) where a; = 9; + 8i. We rederive the solution in terms 
of the LOS angle 8 for consistency with our later and 

re  = Vo(6) (29) derivation. 

r = r; 
+ psin(8 + c )  ( P ~ - ~ ) / ( P * + ~ P C ~ C + ~ )  

VR (8) = VT cos 8 - V, cos(b8 - c )  (30) 
where 

1 2p(& - 8)sinc 
p2 + 2pcosc + 1 

. and 
Ve(8) = -VTsinO + VMsin(b8 - c ) .  (31) 

The system of equations (24) and (25) describing the 
pursuit against a general case of maneuvering target 
are highly nonlinear. No closed-form solutions are 

Both the solutions for N = 1 and N = 2 have 
the common feature that the angle parameter 8 or $ 
cannot be explicitly expressed in terms of r .  

SHUKLA 8~ MAHAPATRA: THE PROPORTIONAL NAVIGATION DILEMMA-PURE OR TRUE? 385 



To solve for the time t ,  we obtain, from (29) 

8 = -  . Ve(e) 
r(@> 

whence 
Jei &do = t - t;.  (37) 

The integration here can be performed only for N = 1, 
for which case 

t =  (38) 
r i  cos(ei + p )  - r C q e  + p )  

PVM - V T  

Equation (34) and (35) jointly relate r and 8 with t and 
constitute the complete (though implicit) solution for 
the PPN for a nonmaneuvering target for N = 1. 

The PPN equations have not been solved for higher 
N values of 3, 4, 5, etc., or any other real value, even 
for the relatively simple case of nonmaneuvering target 
motion. In the absence of such general solutions, 
linearized solutions such as those in [8] have hitherto 
been used to investigate PN behavior for realistic 
values of N .  Using such linear analysis, it is also 
possible to optimize N in the sense of minimum 
maneuver requirements [S], minimum time until 
intercept, or other criteria. 

Although the complete solution (34) and (38) for 
N = 1 and the partial solution (i.e., r as a function of 8 
and not of t )  (35) for N = 2 are exact, they have very 
limited practical value for the following reasons. 

1) They are valid only for the restrictive case of 
nonmaneuvering targets. 

2) The navigation constant N in a general PN 
problem is a positive real number which may be 
optimized with respect to different performance 
criteria. Forcing it to have discrete values of 1 and 2 
would result in grossly nonoptimal performance. 

values of 1 and 2 would be too low resulting in sluggish 
system response and undesirable trajectory behavior. 
For example N = 1 corresponds to pure (or deviated) 
pursuit course which is known to result in infinite 
maneuver requirements [7]. N = 2 is somewhat better, 
but the value is still considered too low and leads to 
singular solutions under certain conditions. 

It is clear that the existing special analytical 
solutions to the PPN problem for the particular case 
of nonmaneuvering targets are grossly inadequate to 
handle practical PN problems and there is a definite 
need for general solutions powerful enough to handle 
arbitrary values of the navigation constant N for both 
nonmaneuvering as well as maneuvering targets. 

3) Even if one were to choose integer values of N ,  

B. Qualitative Analysis of Pure  Proportional 
N aviga t i on 

While, as brought out in the last section, general 
solutions to the PN trajectory have hitherto not been 

available, qualitative methods have been used [lo-121 
to gain a limited insight into the behavior of the 
differential equations describing the PPN motion. In 
particular, the qualitative methods have been used to 
determine conditions under which a pursuer can reach 
the target from any initial state, and determine bounds 
on the pursuer acceleration. 

It is to be specifically pointed out that the 
qualitative approach has only provided certain 
conditions for the PN motion and not solutions, 
explicit or implicit, for any parameter pertaining to 
such motion. 

1) Nonrnaneuvering Target: For rectilinear, 
constant speed target motion, it was shown by 
Guelman [lo] through a heuristic treatment that 
if NVM > VM + VT and VM > VT, the pursuer will 
reach the target for all but a finite number of possible 
initial conditions at launch. For the finite set of initial 
conditions that satisfy Ve(8;, r; )  = 0 and V,(8;, r ; )  > 0, 
i.e., the initial geometry is such that a collision course 
results but the pursuer is going away from the target, 
the pursuer will not reach the target. Thus, if VM > Vr, 
for all values of N > 2 and under all normal initial 
conditions, the pursuer will always reach the target. 

Also, it was proved in the same paper that, if 
VM > VT and ( ( N  - 2 ) / 2 ) V ~  > VT, the rate of rotation 
of the LOS decreases in the final phases of the pursuit. 
It may be noted that for N > 4 this condition is 
always fulfilled. If N < 4, then this condition serves 
to determine the minimum value for N ,  i.e., N > 
2(J,,-M + VT)/VM. 

In a later work, Guelman [12] demonstrated that 
the normal acceleration of a pursuer engaging a 
nonmaneuvering target is a uniformly decreasing 
function of time if VM > ~ V T ,  N > 4 and initially the 
pursuer is closing toward the target. 

For targets with lateral 
acceleration, Guelman [12] showed that if VM > f i V ~  
and NVM > VM + VT, then the pursuer reaches the 
target for all initial launch conditions except for those 
where the initial engagement geometry is such as to 
make 8i = 0 and the pursuer is moving away from the 
target. 

Also, if initially the pursuer is closing toward the 
target with VM > 4 V T ,  N > 4 and the initial lateral 
acceleration AM,  of the pursuer is such that a) if 
IAM~ I >  AM^ then IAM I will decrease until [AM I 5 
AM,,, , and b) if 

2) Maneuvering Target: 

I 5  AM^ then [AM I 5  AM^ where 
AMm = [ N / ( N  - ~)][VM/VT]IATI. 

C. Classical Linear Solutions of Pure Proportional 
Navigation 

In the absence of general closed-form solutions 
of the nonlinear PPN equations, various forms of 
linearization have been resorted to. These are based 
on the assumption that the engagement geometry stays 
close to a collision course with a small LOS angle and 
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the target heading /3 does not change much from its 
initial direction p;. Such assumptions lead to a linear 
time-varying differential equation of first order for 
the LOS rate (nonhomogeneous for maneuvering 
target and homogeneous for nonmaneuvering target) 
which is straightforward to solve [S]. The resulting 
linear solutions are quite accurate for small values of 
6,  A@i, and AT (i.e., a near-tail-chase geometry with 
a trajectory close to the collision course and small 
target maneuvers), but becomes increasingly inaccurate 
for larger values of 6,  A&, and AT, becoming rather 
unacceptable for large values of these parameters [13]. 

r only which can then be solved. Dividing (40) by re  
we obtain 

8 r c  
- + 2- + - = 0. 6 r r  

Integrating (41) we get 

where K is the constant of integration. Substituting the 
value of 6 in (39) we obtain 

(43) 

D. Quasilinear Solutions of Pure Proportional 
Navigation of the integral 

Equation (43) can also be rearranged to give the value 

The severe restrictions on the engagement 
geometry and the target maneuver levels, necessary 

exp [ - N J  $1 = r3- r 
K2. 

Differentiating (43) and then using the value of the 
integral from (44), we obtain 

to ensure the validity of classical linear solutions, 
have been to a large extent obviated by adopting 
a quasilinear approach [15, 161. Although such an 
approach is normally used for numerical iteration, by rr + (3 + 2C)i: = 0. (45) 
confining attention only to the terms up to the first 
derivative and considering only one iteration, it is 
possible to obtain analytical expressions for all the 
trajectory parameters for both nonmaneuvering as 
well as maneuvering targets. Such a solution has the 
merit of providing accurate analytical estimates of the 
trajectory parameters for engagement geometries that 
are significantly far from the tail-chase and for high 
target maneuver levels. 

V. TRUE PROPORTIONAL NAVIGATION 

In TPN the commanded acceleration is applied 
normal to the LOS. TPN first appeared in open 
literature in an article by Murtaugh and Kriel 
[9] where a linearized treatment was used to 
obtain the solution for trajectory parameters for 
a nonmaneuvering target. The resulting solutions 
obtained were similar to those obtained for the PPN 
case. 

using (6) and (11) by equating the components of AM 
and d2r /d t2  along e, and ee, respectively 

The equations of motion under TPN can be written 

(39) 

(40) 

i: - re2 = 0 

r e  + 2re = -ce 
and 

where C = --XVR~. 

A. Closed-Form Solution 

A close look at the system of equations (39) and 
(40) reveals that since the right-hand side (RHS) of 
(39) equals zero, it is possible to obtain an equation in 

Equation (45) was originally obtained by Guelman 
[3], but the approach followed in this work is more 
direct and straightforward. 

solution in terms of that variable. Guelman [3] has 
obtained such a solution in the closed form, though 
the complex nature of the problem has necessitated 
multiple changes of variable, leading to some loss of 
physical insight, and the resulting solutions are implicit 
in terms of these indirect variables. 

It is to be noted here that a univariate form such 
as (459, leading to a closed-form solution, has been 
possible only because the RHS of (39) is zero, as 
in the case of nonmaneuvering targets. Such neat 
manipulation is not possible if the RHS of (39) is 
nonzero which would be the case for a maneuvering 
target and/or further generalizations of TPN. 

This approach to the closed-form solution of the 
TPN problem, which is the only one available yet, 
therefore leads to a dead-end solution which is valid 
only for TPN applied to nonmaneuvering targets, but 
cannot be generalized further either in terms of target 
motion or in terms of the PN scheme. 

It is obvious from the definitions of TPN and 
PPN that they would both reduce to the collision 
course as the heading error vanishes; therefore it is 
not surprising that the behavior of the TF” solution 
is similar to that of the PPN when the engagement 
geometry is close to a collision course. However, for 
geometries significantly different from the collision 
course, TF” shows remarkably different behavior as 
compared with PPN. In particular, the Occurrence of 
intercept in case of TPN is restricted to engagements 
where the initial conditions lie within a determined 
circle, defined as the circle of capture. This is usually 

Equation (45) is in terms of r only and is open to 
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far more restrictive than the case of PPN for which 
capture is assured for all initial pursuer directions 
except for a precisely defined particular direction 
(Section IVBl and IVB2) as long as the following 
liberal conditions are satisfied: 1) for nonmaneuvering 
target: VM > VT and NVM > VM + VT, and 2) for 
laterally maneuvering target: VM > &VT and NVM > 
VM + VT. These conditions are always satisfied if N > 
2 which is the case for most normal PN engagements. 
In addition, since a component of the control force is 
applied along the pursuer velocity vector in the case 
of TPN, this results in forward speed variations of the 
pursuer. Such is not the case with PPN. 

Thus, although a closed-form solution is available 
for TPN for the nonmaneuvering target case, the 
TPN law itself is of limited practical value due to the 
following reasons: 1) TPN imposes severe restrictions 
on the initial launch geometry in order to ensure 
intercept of the target even for the commonly used 
values of the navigation constant (A > 3). 2) The 
control effort tends to vary the pursuer forward 
velocity throughout the engagement which is not 
possible with the commonly used aerodynamic 
controls; for reaction control, it necessitates thrusters 
with forward acceleration/deceleration capability. 

VI. GENERALIZED TRUE PROPORTIONAL 
NAVIGATION 

In the last Section, it was pointed out that although 
the TPN case resulted in a closed-form solution, at 
least for nonmaneuvering targets, one of the major 
weaknesses of TPN is the limited capture area, which 
severely restricts the choice of the initial launch 
conditions to ensure intercept. In a recent article 
[4], a GTPN law has been proposed which claims 
to minimize this drawback. In GTPN, the pursuer 
acceleration is not necessarily applied normal to the 
LOS, but maintains a fixed angle y with respect to the 
normal to the LOS. TF" is a special case of GTPN 
when y = 0. 

The equations of motion under GTPN can be 
written using (6) and (9) by equating the components 
of AM and d 2 r / d t 2  along e, and ee, respectively 

r - re2 = ~ ~ 0 ; s i n y  

r e  + 2i.8 = -XvR;cosy. 

(46) 

(47) 
and 

As discussed in the last section, the method used to 
solve the TPN case cannot be used to solve the above 
system of equations (46) and (47) representing the 
GTPN case. To solve these equations, the independent 
variable is changed to 8. Also, the system of equations 
governing the pursuer motion are written in terms of 
VR and Ve. The system of these first-order differential 
equations is then solved to give VR and Ve in terms 
of the LOS angle 8. This solution is then used to 

obtain the inequality defining the capture area (i.e., 
the relationship between V R ~ ,  Vei, A, and y which 
satisfy the constraints Ve(8f )  = 0 and V ~ ( 8 f )  < 0). 
The capture area so obtained is not necessarily 
a circle. Next, a differential equation relating the 
angular momentum h(= rVe)  and 8 is obtained. The 
solution of this equation, involving the evaluation 
of a complicated integral, provides h in terms of 8. 
However, the integral can be evaluated, in terms of 
elementary or elliptic functions, only if the RHS of 
(46) and (47) are trigonometric functions. Once the 
solution for h has been found, the LOS rate 6 can be 
obtained as 6 = Vz/h. The relative distance r is found 
as r = h/Ve and the duration tf of pursuit is obtained 
by a further integration of the expression for r within 
the limits of 8; and Of, where Of is obtained by solving 
the transcendental equation Ve(8f) = 0. 

The solution obtained for GTPN using the above 
methodology is implicit in nature. Although an 
inequality defining the capture area is obtained in 
[4], no explicit expressions for any of the trajectory 
parameters such as 8, 6,  AM or time t are presented. 

It has been established in [4] that GTPN has a 
larger capture area than TPN in the region where 
C = IVR;/V~;~' /~ is smalL Also, t f  is very sensitive to 
variations in y, for small and large values of y, and is 
relatively invariant for moderate values of 7. However, 
it has been observed that for slightly large values of y, 
where the advantage of larger capture area is claimed, 
GTPN results in unbounded LOS rate and control 
force even for normal values of navigation constant 
such as X = 3. Thus, the advantage of slightly larger 
capture area in the case of GTPN is greatly offset by 
the highly undesirable trajectory behavior. 

Since GTPN is a generalization of TPN, the method 
used to solve GTPN can also be used to solve for TPN 
as a special case. GTPN is in turn a special case of 
a more general guidance law called the Generalized 
Guidance Law [6] in which the applied control effort 
is made proportional to the rate of change of a 
generalized vector L in a two-dimensional space. The 
generalized direct )n L is written as 

L = f ( r , @ ,  + g(r ,@)ee.  (4) 

The Generalized Guidance Law requires that the 
pursuer acceleration to be commanded should be equal 
to the time rate of L, ie.,  

A M = L  (49) 

+ -- + - +f Bee. (49a) (2:; 2 ) .  
It is easily seen that depending upon the choice 

of f ( r , 8 )  and g(r ,8 )  a family of LOS-referenced 
guidance laws will result. In particular, if f ( r , 8 )  = X 
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Fig. 4. Variation of VM and r'~ as function of r / r ;  for TI". For PPN, r'~ = 0 and V,,/VM; = 1 for all values of r / r ; .  

and g(r ,8 )  = 0 then TPN results, and f ( r , @ )  = Xcosy 
and g ( r , 8 )  = Xsiny would result in GTPN. 

Although the Generalized Guidance Law is indeed 
quite general as far as LOS-referenced guidance laws 
go, the integral involved in obtaining the solution for 
the differential equation in h and 8 is shown [6] to 
be tractable for the particular cases of TPN, GTPN, 
and Prediction Guidance Law [14] and that too only 
for the case of nonmaneuvering target. However, 
it is easy to see that since the PPN control force is 
referenced relative to the pursuer velocity vector 
which has no fixed angular relationship with the LOS, 
LOS-referenced guidance laws such as the Generalized 
Guidance Law and its special cases cannot include 
the PPN, i.e., the PPN is not a natural candidate for 
definition under the Generalized. Guidance Law. As 
such, the relatively considerable success achieved in the 
analysis of LOS-referenced guidance laws cannot be 
made use of in treating the PPN problem. 

VII. CRITICAL COMPARISON BETWEEN DIFFERENT 
TYPES O F  PN LAWS 

The aim of this section is to present a comparative 
study of the PPN, TPN, and GTPN guidance laws 
with regard to their definition, implementation, 
analytical aspects including the method and the nature 
of solution, and more importantly, an appraisal of 
the behavior of the pursuer motion resulting from 

these guidance laws. These guidance laws have been 
individually discussed in the preceding sections. 

A. Forward Velocity Variation 

In PPN the commanded acceleration is applied 
normal to the pursuer velocity vector; thus there is no 
component of acceleration along the pursuer heading 
direction and hence the pursuer forward velocity VM 
remains constant. In contrast in TPN, the commanded 
pursuer acceleration is applied normal to the LOS, 
resulting in acceleration both along and normal to 
the pursuer velocity vector. The forward acceleration 
component is given as I'M = -AM sin(8 - $1. 

In GTPN, the pursuer acceleration is applied at 
a fixed angle y with the normal to the LOS. Here 
again, in general, the commanded acceleration has 
components both along and normal to the pursuer 
velocity vector. The forward acceleration component 
here is given as I'M = -AM cosysin(8 - I$). 

A plot showing the variation of I'M as a function 
of the normalized range r /r i  is shown in Fig. 4 for 
the case of TPN. These plots have been obtained by 
numerical integration of the original equations of 
motion in Section V. Similar plots for PPN would be 
straightforward, being uniformly equal to zero. The 
L& graphs in Fig. 4 corroborate the fact that the TPN 
scheme requires considerable acceleration/deceleration 
along the flight direction of the pursuer. This effect 
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TABLE I 
Cumulative Velocity Increment A V  Indicating Total Control Effort 

for 'IF" and PPN 

I 0 / M i  

guidance but even in this case the TPN law results in 
inefficient navigation. 

A V d s  

N = 2  1 N = 3  N = 4  

T P N  PPN TI" PPN TPN PPN 

30 15 43.76 42.88 33.15 32.80 29.07 28.72 
60 40 123.67 96.82 9234 7958 80.95 71.68 

Note: Roman letter symbols here correspond to italic letter 
symbols in text. 

is very pronounced for large departures of the 
geometry from the collision course. Such forward 
acceleration/deceleration are impossible to apply in a 
controlled manner using aerodynamic/hydrodynamic 
control surfaces which are most frequently used in 
PN applications. With reaction type control, which 
is normally adopted outside the atmosphere, such 
acceleration/deceleration is possible but cumbersome 
and, as shown below, wasteful. 

acceleration/deceleration is to cause forward velocity 
variations of the pursuer as shown in the normalized 
VM plots for TPN in Fig. 4. These plots have been 
obtained by numerical integration of the original 
equations of motion in Section V. Similar plots for 
PPN are straightforward, being constant at a value 
of unity. Such pronounced speed variations for 
TPN would result in changes in the aerodynamic 
characteristics, control system behavior, and 
autopilotage. 

schemes under discussion, the PPN and the TPN, 
is tabulated in a b l e  I. The control efficiency is 
indicated by the integral of the magnitude of the 
lateral acceleration, i.e., $' ( A M \ &  [9]. Table I shows 
that PPN consistently requires a lower control effort 
than TPN for all geometries and navigation constant 
values. As expected, the difference is small for shallow 
geometries, i.e., those close to tail-chase and collision 
course, for which conditions both the PN schemes 
show similar behavior, as discussed earlier. However, 
at larger departures from tail-chase and the collision 
course conditions, the disadvantage of TPN is very 
pronounced, reaching a value as much as 27.7 percent 
(of extra control effort requirement relative to PPN) 
for 8i = 60°, A@i = 40°, and N' = 2. The relative 
inefficiency of the TPN can be directly traced to the 
longitudinal acceleration/deceleration caused by the 
TPN scheme. Such acceleration/deceleration does not 
contribute to the lateral maneuver of the pursuer, but 
consumes control effort nevertheless. 

From the foregoing discussions, it is clear that the 
TPN law is practically difficult to implement in most 
commonly used present day aerodynamically controlled 
missiles. It may find application only in space vehicle 

The cumulative effect of the longitudinal 

The kinematic control efficiency of the two PN 

8. Analytical Aspects 

As discussed earlier in Section V, the method 
used to obtain the solution for pursuer motion 
under TPN is a special one, applicable only to 
nonmaneuvering targets. It cannot be extended 
to the case of maneuvering targets or to further 
generalizations of TPN. Even for the restricted case 
of nonmaneuvering target, the solution requires a 
sequence of variable transformations resulting in loss 
of physical insight. 

The GTPN case has been solved by adopting 
the LOS angle 8 as the independent variable. The 
solutions thus obtained are implicit in nature. Although 
an expression for the inequality representing the 
capture region is available, no explicit solutions for any 
of the trajectory parameters have yet been possible. 
Also, the general solution of the GTPN involves an 
integral which has been integrable only for the case 
of nonmaneuvering targets and even that only for 
relatively simple TPN variants. 

In contrast to TPN and its generalizations, the PPN 
equations have generally proven more difficult to solve. 
Thus, the exact solutions available for PPN are much 
more restricted than for TPN and its generalizations, 
covering only the nonmaneuvering target case and 
the discrete values of 1 and 2 of the navigation 
constant N .  

C. Trajectory Behavior 

TPN and GTPN are special cases of a Generalized 
Guidance Law, where the pursuer acceleration is 
proportional to the derivative of a general direction 
vector L in a two-dimensional space [6]. Although this 
class of guidance laws are mathematically tractable, 
at least for the nonmaneuvering target case, the 
laws themselves give rise to undesirable trajectory 
behavior such as restricted capture area, unbounded 
acceleration, etc. These are discussed in the following 
paragraphs. 

area is delineated by the inequality [3] 
1 )  Capture Area: For the TPN case, the capture 

This is a circle centered at (-C,O) with radius C 
and is depicted in [3, Fig. 31. The center of the circle 
corresponds to X = 1.0 while the bottom end of the 
circle (-2C,O) corresponds to X = 0.5. 

For GTPN, the capture area is defined by [4] 

1 - 2Ccosy' 

The total capture area is characterized by the RHS 
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region of the contour defined by the equation 

L =  

and is depicted in [4, Fig. 11. It can be seen that GTPN 
has a larger capture area than that of TPN (y = 0) in 
the region where lV~;/Vo;l is small. 

The capture behavior of TPN and GTPN may be 
contrasted with the PPN case where intercept is always 
possible except for one definite direction when Ve; = 0 
and VR; > 0 provided VM > VT and NVM > VM + VT; 
this condition being always satisfied for N > 2, as 
is usually the case. Thus, whereas capture is always 
possible under the PPN scheme for all commonly used 
values of navigation constant and launch geometries, 
TPN and GTPN impose great restrictions on the initial 
conditions for intercept to occur. 

discussed earlier in Section IVBl), the PPN pursuer 
lateral acceleration is a uniformly decreasing function 
of time if V ,  > f i V ~  and N > 4. 

For TPN, the pursuer lateral acceleration is a 
uniformly decreasing function of time only if X + 
( v ~ ; / v R ; ) ~  > 3.  his again imposes restrictions on 
initial conditions for the LOS rate to remain bounded 
and is shown in [3, Fig. 61. 

regard to the boundedness of the LOS rate is shown 
by GTPN, where, even for the normal values of 
the navigation constant A, the LOS rate becomes 
unbounded as y increases from 0 to slightly larger 
values. The behavior is depicted in [4, Fig. 31 for X = 3. 

acceleration is proportional) remains bounded 
throughout the engagement for PPN for all commonly 
used values of the navigation constant, TPN again 
imposes restrictive conditions on the initial geometry. 
In the case of GTPN, as the angle y increases from 0 
(TPN case) to larger values, the LOS rate becomes 
unbounded even for the normally used values of 
navigation constant. It may be noted that GTPN [4] 
has claimed superiority over TPN in terms of larger 
capture area precisely when the angle y is large. 

From the preceding discussions 
it is obvious that the TPN, GTPN, and their 
generalizations are not robust in the sense that 
desirable trajectory behavior is strongly dependent on 
the initial engagement geometry and even intercept is 
not assured under all engagement conditions. Thus, the 
practical usefulness of these laws is highly restricted, 
since establishing favorable initial conditions may not 
always be possible for all engagement scenarios. 

D. Summary of Comparative Features 

2) Boundedness of AccelerationlLOS Rate: As 

However, perhaps the worst behavior with 

Thus, whereas the LOS rate (to which lateral 

3) Robusmess: 

1) Requirement of thrusters to provide for forward 
velocity variation; implementation not possible in 
aerodynamically controlled pursuers. 

2) Inefficiency of control effort relative to PPN. 
3 )  Restriction on initial conditions so as to ensure 

4) Unboundedness of acceleration, especially for 

5 )  Lack of robustness. 

From a practical point of view, PPN (and other 
similar laws referenced to the pursuer velocity vector) 
is a guidance law far superior to TPN and other 
LOS-referenced guidance laws. From this viewpoint, 
the only utility of the latter class of laws appears to be 
that they can serve as an approximation to the more 
practical PPN law and yet provide analytical solution 
under somewhat broader conditions than is possible 
for PPN. Clearly, the approximation of PPN by TPN is 
valid only for geometries close to the collision course 
(Section V), for which case linear solution itself gives 
reasonably accurate results. For the more general 
geometries, there is no alternative but to solve the PPN 
problem. 

intercept. 

GTPN. 

VIII. CONCLUSIONS 

In this paper two generic classes of PN laws 
have been compared in detail. One class consists of 
pursuer velocity-referenced systems which include PPN 
and its variants and the second category consists of 
LOS-referenced systems such as TF", GTPN, and the 
Generalized Guidance Law. It has been established 
that in spite of some restricted advantages in solvability 
of the equations of motion, the LOS-referenced PN 
schemes suffer from serious limitations in terms of 
implementation and trajectory behavior. Among 
the major drawbacks are forward velocity variation 
requirement (i.e., forward acceleration and braking), 
relatively large control effort requirement, restrictions 
on initial conditions to ensure intercept, lack of 
robustness, and possibility of unbounded acceleration. 
This leads to the firm conclusion that PPN is the more 
natural guidance law in a practical sense compared 
with TPN and its generalizations. 

Thus, although more analytical effort appears to 
have been bestowed on TPN and its generalizations, 
the authors contend here that more serious efforts 
need to be made to understand, model, and solve 
the PPN guidance problem. The authors have 
made a contribution in this direction through their 
quasilinearized approach to the solution of the PPN 
problem which has been shown to be far more 
accurate and general in terms of geometries and target 
maneuver levels handled. In view of the great practical 

In brief, PN laws referenced to the LOS (such as importance of PPN over TPN and its geierakations, 
further efforts are called for in understanding the PPN 
as a guidance law. 

TPN, GTPN, and Generalized Guidance Law) are 
impractical due to the following reasons. 

SHUKLA & MAHAPATRA: THE PROPORTIONAL NAVIGATION DILEMMA-PURE OR TRUE? 39 1 



REFERENCES 

[l] Siouris, G. M., and Leros, P. (1988) 
Minimum-time intercept guidance for tactical missiles. 
Control Theory and Advanced Technology, 4 , 2  (1988), 
251-263. 

[2] Nesline, E W., and Zarchan, P. (1979) 
A new look at classical versus modern homing missile 
guidance. 
In AlAA Guidance and Control Conference Proceedings, 
1979, 230-242. 

The closed form solution of true proportional navigation. 
IEEE Transactions on Aerospace and Electronic Systems, 

(31 Guelman, M. (1976) 

Am-7, 4 (July 1976), 472-482. 
[4] Yang, C. D., Yeh, E B., and Chen, J. H. (1987) 

The closed form solution of generalized proportional 
navigation. 
Journal of Guidance, Control and W a m i c s ,  10, 2 
(Mar.-Apr. 1987, 216-218. 

Yang, C. D., and Yeh, E B. (1987) 
Closed form solution for a class of guidance laws. 
Journal of Guidance, Control and Dynamics, 10, 4 (Aug. 
1987, 412415. 

Generalized guidance law for homing missiles. 
IEEE Transactions on Aerospace and Electronic Systems, 
Am-25, 2 (Mar. 1989), 197-212. 

Guidance. 
Princeton, N J  Van Nostrand, 1956. 

Systems Preliminary Design. 
Princeton, N J  Van Nostrand, 1%0. 

[5] 

[6] Yang, C. D., Yeh, E B., and Hsiao, E B. (1989) 

[7] Locke, A. S. (1956) 

[8] Jerger, J. J. (1960) 

191 

01 

Murtaugh, S. A., and Criel, H. E. (1966) 
Fundamentals of proportional navigation. 
IEEE Spectrum, 3, 12 (Dec. 1966), 75-85. 

A qualitative study of proportional navigation. 
IEEE Transactions on Aerospace and Electronic Systems, 

Guelman, M. (1971) 

AES-7, 4 (July 1971), 337-343. 
Guelman, M. (1972) 

Proportional navigation with a maneuvering target. 
IEEE Transactions on Aerospace and Electronic Systems, 
AES-8, 3 (May 1972), 364-371. 

Missile acceleration in proportional navigation. 
IEEE Transactions on Aerospace and Electronic Systems, 
AES-9, 3 (May 1973), 462463. 

New kinematic studies on the proportional navigation 
problem. 
Ph.D. dissertation, Department of Aerospace Engineering, 
Indian Institute of Science, Bangalore, India, Sept. 1988. 

A new guidance law for homing missiles. 
Journal of Guidance, Control and Qynamics, 8, 3 
(May-June 1985), 402404. 

A generalized linear solution of proportional navigation. 
IEEE Transactions on Aerospace and Electronic Systems, 
AES-24, 3 (May 1988), 231-238. 

Accurate solution of proportional navigation for 
maneuvering targets. 
IEEE Transactions on Aerospace and Electronic Systems, 
AES-25, 1 (Jan. 1989), 81-89. 

Guelman, M. (1973) 

Shukla, U. S. (1988) 

Kim, Y. S., Cho, H. S., and Bien, Z (1985) 

Shukla, U. S., and Mahapatra, P. R. (1988) 

Mahapatra, P. R., and Shukla, U. S. (1989) 

Uday S. Shukla was born in 1951 in Mathura (UP.), India. He received the 
Bachelor's degree in electrical communication engineering in 1973 and the Ph.D. 
degree in aerospace engineering in 1989, both from the Indian Institute of Science, 
Bangalore, India. 

Until recently, he was employed with Hindustan Aeronautics Limited in 
Bangalore, working on avionics and navigation systems. Currently, Dr. Shukla is 
with the Centre for Development of Advanced Computing in Bangalore, looking 
after system software development for parallel machines. 

Pravas R. Mahapatra received the B.Sc. (Engg) from Regional Engineering 
College at Rourkela, and the M.E. and Ph.D. degrees from the Indian Institute 
of Science at Bangalore, India. 

Dr. Mahapatra has been teaching at the Department of Aerospace Engineering 
in the Indian Institute of Science since 1970, where he is currently an Associate 
Professor. He has a broad area of active interest within the field of aerospace and 
electronic systems. This includes radar systems, navigational aids, and navigation 
theory and flight safety aspects with particular reference to weather phenomena 
and air traffic control. Dr. Mahapatra is a member of the U.S. Institute of 

B a Navigation. 

392 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 26, NO. 2 MARCH 1990 

View publication stats

https://www.researchgate.net/publication/3001817

