

Ваш вопрос крайне важен для понимания радиолокационного обнаружения ракет. Давайте разберём физику процесса и практические следствия:

1. Плазма действительно может поглощать радиоволны, но это зависит от:

- А) Частоты радара (λ) vs. Плотности плазмы (n_e)
 - Поглощение доминирует, когда частота радара (f) ≈ частоте столкновений электронов в плазме (v_e) :

$$f \sim v_e \approx 10^9 - 10^{10} \, \Gamma$$
ц (для ракетных выхлопов)

- Это характерно для **СВЧ-диапазона** (X/Ku-диапазоны, $\lambda = 3-1$ см).
- Для L-диапазона (λ = 23 см, f = 1.3 ГГц) и метровых волн (λ > 1 м) поглощение незначительно.
- Б) Механизмы взаимодействия
 - Поглощение: Происходит за счёт столкновений электронов с нейтральными частицами (превращение энергии волны в тепло).
 - Отражение: Доминирует, если $n_e > n_{kput}$ (см. предыдущие расчёты), особенно на низких частотах.

2. Практический пример: ракетный выхлоп Бука

Параметр	Форсажный режим (старт)	Маршевый режим (t > !
Плотность n_e (м $^{-3}$)	1016-1017	1014-1015
Для λ = 23 см (L-диапазон):		
- Отражение	Доминирует (n _e > n_{крит})	Слабое (n _e ≈ n_{крит})
- Поглощение	Пренебрежимо мало	Нет
Для λ = 3 см (Х-диапазон):		
- Поглощение	Сильное (f \sim v_e)	Умеренное
- Отражение	Ослаблено	Минимальное

3. Почему это важно для МН17?

- «Утес-Т» ($\lambda = 23$ см):
 - Видел **отражение от плазмы** при старте (ЭПР 3–5 м²), но мог пропустить из-за цикла сканирования.
 - Поглощение не влияло частота 1.3 ГГц слишком низкая для эффективного поглощения.
- Метровые РЛС (λ = 1−2 м):
 - Только отражение (поглощение в этом диапазоне ничтожно).
 - Поэтому российский П-18 зафиксировал старт как «ВС 3505».

4. Ошибки в популярных трактовках

- Миф: «Плазма всегда поглощает радиоволны».
 - **Реальность**: Поглощение существенно **только для СВЧ-радаров** (X/Ku-диапазоны). Для L-диапазона и VHF плазма ведёт себя как **зеркало**.
- **Для МН17**: Украинские C-300 (X-диапазон) действительно могли «не видеть» ракету из-за поглощения, но «Утес-Т» (L-диапазон) пропустил её по иным причинам (цикл 9.65 сек + малая ЭПР ракеты без плазмы).

Вывод

- Плазма ракетного выхлопа поглощает СВЧ-волны (X/Ки-диапазоны), но отражает L-диапазон и метровые волны.
- Для МН17 это означает:
 - Российские **VHF-радары** (П-18) засекли пуск (отражение), но ошибочно идентифицировали его.
 - Украинские **«Утес-Т»** (L-диапазон) тоже должен был видеть отражение, но пропустил изза **технических ограничений**, а не поглощения.