УДК 530.12 DOI: 10.25513/2222-8772.2017.3.5-11

ОБ ИСТОЧНИКАХ АНТИГРАВИТАЦИИ

А.К. Гуц

профессор, д.ф.-м.н., e-mail: guts@omsu.ru

Омский государственный университет им. Ф.М. Достоевского

Аннотация. Приводится формула для «гравитационной» силы в постоянном статичном сферически-симметричном пространстве-времени, позволяющая описывать смену гравитации на антигравитацию. Анализируются возможные источники антигравитации.

Ключевые слова: антигравитация, источник антигравитации.

Традиционно в общей теории относительности (ОТО) считается, что гравитация, т. е. притяжение материальных тел, определяется кривизной пространства-времени $R_{ijkl} \neq 0$. В силу этого компоненты метрического тензора g_{ik} рассматриваются как потенциалы гравитационного поля. Однако, как учит диалектика, притяжения не бывает без отталкивания. Следовательно, кривизна пространства-времени должна, в зависимости от ситуации, проявляться то как гравитация, то как антигравитация.

Следует иметь в виду, что поскольку исторически ОТО создавалась как теория релятивистской гравитации, т. е. как теория притяжения, то отталкивание, т. е. антигравитацию в ОТО часто называют гравитационным отталкиванием, а собственно гравитацию — гравитационным притяжением. Автору кажется уместным использовать термины гравитация и антигравитация.

В статье мы выводим формулу, показывающую, каким образом кривизна сказывается либо как притяжение, либо как отталкивание.

1. Антигравитация определяется знаком кривизны Риччи

1.1. Две формулы для постоянного метрического поля

Для постоянного метрического, или «гравитационного», поля g_{ik} ($g_{00} > 0$) справедивы следующие две формулы:

$$f_{\alpha} = \frac{mc^2}{\sqrt{1 - \frac{V^2}{c^2}}} \left\{ -\frac{\partial}{\partial x^{\alpha}} \ln \sqrt{g_{00}} + \sqrt{g_{00}} \left[\frac{\partial}{\partial x^{\beta}} \left(\frac{g_{0\alpha}}{g_{00}} \right) - \frac{\partial}{\partial x^{\alpha}} \left(\frac{g_{0\beta}}{g_{00}} \right) \right] \frac{V^{\beta}}{c} \right\} \tag{1}$$

— для силы поля g_{ik} , действующей на пробную частицу [1, р. 327], где V^{α} — скорость частицы, и

$$\frac{1}{g_{00}}R_{00} = \frac{1}{\sqrt{g_{00}}}(\sqrt{g_{00}})^{\alpha}_{\alpha} + \frac{\sqrt{g_{00}}}{4}f_{\alpha\beta}f^{\alpha\beta}$$
 (2)

для 00-компоненты уравнений Эйнштейна [1, с. 361], где

$$f_{\alpha\beta} = \frac{\partial}{\partial x^{\alpha}} \left(\frac{g_{0\beta}}{g_{00}} \right) - \frac{\partial}{\partial x^{\beta}} \left(\frac{g_{0\alpha}}{g_{00}} \right)$$

и «;» обозначает ковариантную или контрвариантную производную относительно 3-метрики [1]

$$\gamma_{\alpha\beta} = -g_{\alpha\beta} + \frac{g_{0\alpha}g_{0\beta}}{g_{00}}$$

и соответствующей римановой связности

$$\lambda_{\beta\nu}^{\alpha} = \frac{1}{2} \gamma^{\alpha\mu} \left(\frac{\partial \gamma_{\beta\mu}}{\partial x^{\nu}} + \frac{\partial \gamma_{\nu\mu}}{\partial x^{\beta}} - \frac{\partial \gamma_{\beta\nu}}{\partial x^{\mu}} \right).$$

1.2. Статичное метрическое поле

Рассмотрим статичное метрическое поле g_{ik} , т. е. компоненты g_{ik} независимы от времени x^0 и $g_{0\alpha}=0$ ($\alpha=1,2,3$).

Полагаем также, что поле g_{ik} описывается уравнениями Эйнштейна вида

$$R_{ik} - \frac{1}{2}g_{ik}R = \frac{8\pi G}{c^4}[(\varepsilon + p)u_i u_k - pg_{ik}],$$

$$u^0 = \frac{1}{\sqrt{g_{00}}\sqrt{1 - \frac{v^2}{c^2}}} - \frac{g_{0\alpha}v^{\alpha}}{c\sqrt{1 - \frac{v^2}{c^2}}}, \quad u^{\alpha} = \frac{v^{\alpha}}{c\sqrt{1 - \frac{v^2}{c^2}}},$$
(3)

а материя его создающая покоится в нашей системе отсчёта, т. е. $v^{\alpha}=0$ $(\alpha=1,2,3).$

Тогда формулы (1), (2) принимают вид:

$$f_{\alpha} = -\frac{mc^2}{\sqrt{1 - \frac{V^2}{c^2}}} \frac{\partial}{\partial x^{\alpha}} \ln \sqrt{g_{00}} = -\frac{mc^2}{\sqrt{g_{00}}\sqrt{1 - \frac{V^2}{c^2}}} \frac{\partial \sqrt{g_{00}}}{\partial x^{\alpha}},\tag{4}$$

$$\frac{1}{g_{00}}R_{00} = \frac{1}{\sqrt{g_{00}}}(\sqrt{g_{00}})^{;\alpha}_{;\alpha}.$$
 (5)

Из (4) и (5) выводим:

$$\frac{1}{g_{00}}R_{00} = \frac{1}{\sqrt{g_{00}}}(\sqrt{g_{00}})_{;\alpha}^{;\alpha} = \frac{1}{\sqrt{g_{00}}}\left(\frac{\partial\sqrt{g_{00}}}{\partial x^{\alpha}}\right)^{;\alpha} = -\frac{\sqrt{1 - \frac{V^2}{c^2}}}{mc^2\sqrt{g_{00}}}(\sqrt{g_{00}}f_{\alpha})^{;\alpha} = \\
= -\frac{\sqrt{1 - \frac{V^2}{c^2}}}{mc^2\sqrt{g_{00}}}\gamma^{\alpha\beta}(\sqrt{g_{00}}f_{\alpha})_{;\beta} = -\frac{\sqrt{1 - \frac{V^2}{c^2}}}{mc^2\sqrt{g_{00}}}(\sqrt{g_{00}}\gamma^{\alpha\beta}f_{\alpha})_{;\beta} = -\frac{\sqrt{1 - \frac{V^2}{c^2}}}{mc^2\sqrt{g_{00}}}(\sqrt{g_{00}}f^{\beta})_{;\beta}.$$

Используем формулу римановой геометрии

$$A_{;\beta}^{\beta} = \frac{1}{\sqrt{\gamma}} \frac{\partial(\sqrt{\gamma}A^{\beta})}{\partial x^{\beta}}, \quad \gamma = \det||\gamma_{\alpha\beta}||.$$

Значит,

$$\frac{1}{g_{00}}R_{00} = -\frac{\sqrt{1 - \frac{V^2}{c^2}}}{mc^2\sqrt{g_{00}}\sqrt{\gamma}}\frac{\partial(\sqrt{g_{00}}\sqrt{\gamma}f^\beta)}{\partial x^\beta}.$$

Кривизна Риччи в направлении u^i определяется как $Ric(u) = R_{ik}u^iu^k$. В нашем случае $u^i = (u^0, 0, 0, 0), \ u^0 = 1/\sqrt{g_{00}}$ (см. (3)) и

$$Ric(u) = R_{00}u^0u^0 = -\frac{\sqrt{1 - \frac{V^2}{c^2}}}{mc^2\sqrt{g_{00}}\sqrt{\gamma}}\frac{\partial(\sqrt{g_{00}}\sqrt{\gamma}f^\beta)}{\partial x^\beta},\tag{6}$$

ИЛИ

$$\frac{\partial(\sqrt{-g} \ f^{\beta})}{\partial x^{\beta}} = -\frac{mc^2}{\sqrt{1 - \frac{V^2}{c^2}}} \sqrt{-g} \ Ric(u), \tag{7}$$

поскольку $g_{00}\gamma = -g$.

1.3. Статичное сферически симметричное метрическое поле

Для этого метрического поля $f^{\alpha}=(f^r,f^{\theta},f^{\varphi}), \quad f^{\theta}=f^{\varphi}=0.$ Тогда из (7) имеем

$$\frac{d}{dr}\sqrt{-g} \ f^r = -\frac{mc^2}{\sqrt{1 - \frac{V^2}{c^2}}}\sqrt{-g} \ Ric(u),$$

или

$$f^{r} = -\frac{mc^{2}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}} \int_{0}^{r} \sqrt{-g} \ Ric(u) dr.$$
 (8)

с учётом того, что $f^{\alpha}(0) = 0$.

 Φ ормула (8) — это искомая нами формула. Она показывает, каким образом кривизна пространства-времени сказывается как сила, действующая на пробные тела.

Мы видим, что изменение знака кривизны Риччи в определённой области пространства-времени превращает гравитационное притяжение в гравитационное отталкивание, и обратно.

О том, что знак кривизны Риччи определяет свойство метрики (гравитации) g_{ik} , проявляется как притяжение или отталкивание в смысле, что соседние геодезические вблизи любой точки приближаются в среднем друг к другу или отдаляются друг от друга, известно давно [2, р. 531], и в случае констатации притяжения условие положительности кривизны Риччи называется энергетическим условием. В нашей работе речь идёт о притяжении или отталкивании пробного тела от самого источника гравитационного поля, скажем Земли.

1.4. Формула Грёна

Если принять во внимание формулу [1, р. 361] в форме

$$\frac{1}{g_{00}}R_{00} = \frac{8\pi G}{c^4} \left(\frac{\varepsilon + p}{1 - \frac{v^2}{c^2}} - \frac{\varepsilon - p}{2} \right),\tag{9}$$

то для покоящейся материи

$$Ric(u) = \frac{4\pi G}{c^4} \cdot (\varepsilon + 3p),$$

и формула (8), может быть записана как

$$f^{r} = -\frac{4\pi mG}{c^{2}\sqrt{-g}\sqrt{1 - \frac{V^{2}}{c^{2}}}} \int_{0}^{r} \sqrt{-g} \left(\varepsilon + 3p\right) dr,$$
(10)

Эта формула обобщает формулу Грёна [3, формула (9)], а интеграл в правой части, описывающий «активную гравитационную массу», часто именуется формулой Толмена-Уиттекера [3,4].

Формула (10) говорит, что при изменении знака величины $(\varepsilon+3p)$ в определённой области V пространства притяжение (гравитацию) меняется на отталкивание (антигравитация), и обратно. Об этом писал Грён в 1985 году. Он не называл источник отталкивания, хотя указал на интересную статью Коэнов [5], где гравитационное отталкивание возникает в электрически заряженных оболочках.

Из формулы (10) видно, что источником отталкивания является либо появление в области V экзотической материи ($\varepsilon < 0, \varepsilon + 3p < 0$), либо большого отрицательного давления ($\varepsilon > 0, p < 0, \varepsilon + 3p < 0$).

Заметим, что формула (10) отражает физическую сторону описания движения пробных тел, а формула (8) — геометрическую. Связь же геометрии и физики осуществляется посредством уравнений Эйнштейна.

2. Материя, обеспечивающая смену знака кривизны Риччи

Формула (8) позволяет утверждать, что универсальная сила гравитации (притяжения) наблюдается в пространственно-временных областях, иначе говоря (с точки зрения формулы (10)), в материальных средах, для которых кривизна Риччи положительна. В средах, где кривизна Риччи отрицательна, на пробные тела действует сила антигравитации (отталкивания). Мы живём в материальной среде, где властвует гравитация. Естественно поискать среды, где универсальной силой воздействия на тела будет анигравитация.

2.1. Экзотическая материя

Об экзотической материи, т. е. о материи с отрицательной плотностью писал ещё Эйнштейн [6, с. 89]. Отрицательная масса — это гипотетическая материя, масса которой имеет противоположное значение массе нормального вещества. Такое вещество, если бы оно существовало, нарушало бы одно или несколько энергетических условий, в частности, меняя знак кривизны Риччи и, следовательно, проявляя эффект антигравитации и некоторые другие странные свойства. Считается, что вещество с отрицательной массой можно использовать для создания 3-мерных кротовых нор в пространстве.

Недавно было объявлено от создании жидкости (конденсата Бозе-Эйнштейна в объёме менее $0,001~{\rm mm}^3$), частицы которой приобретали отрицательную массу [7].

2.2. Эффект Казимира

Наиболее известным представителем экзотической материи является вакуум в области с отрицательным давлением, производимыми эффектом Казимира [8, с. 393-394],

$$\varepsilon = -\frac{\pi}{24a^2}, \quad \varepsilon = p.$$

Эффект Казимира, проявляющийся в притягивании двух параллельных пластин в вакууме, можно описать как наличие «отрицательного давления» между пластинами, когда вакуум лишён не только обычных, но и части виртуальных частиц (их рождение подавляется), т. е. «откачали всё и ещё чуть-чуть» 1. На расстояниях порядка $10\,$ нм — сотни размеров типичного атома — давление, создаваемое эффектом Казимира, оказывается сравнимым с атмосферным. Сила Казимира растёт как a^{-4} при уменьшении расстояния a между пластинами. Соответственно растёт сила антигравитации (как a^{-2}).

Возможно, из пластин можно сконструировать нечто похожее на полостную структуру, описанную В.С. Гребенниковым, которая обладала антигравитационными свойствами, если верить автору [9].

Силу Казимира без традиционного квантового её описания изучил Е.М. Лифшиц. Он рассмотрел заполненное ван-дер-ваальсовой жидкостью пространство между пластинами и показал, что при определённых $\varepsilon_1, \varepsilon_2$ диэлектрических проницаемостях пластин и жидкости ε_3 возникает не притяжение пластин, а отталкивание. Эту силу называют силой Казимира-Лифшица. Она была измерена (жидкость — бромбензол) в 2008 и в 2012 годах [10,11]. Авторы эксперимента писали о том, что отталкивающая сила Казимира-Лифшица позволяет осуществлять квантовую левитацию объектов в жидкости.

Обратим внимание на то, что эффект Казимира даёт в наше распоряжение среду не только с экзотической материей, но и с отрицательным давлением. Часто говорят о том, что эта среда есть среда с тёмной энергией, которой

¹Эффект Казимира. — Викиверситет.

свойственно гравитационное отталкивание, т. е. это среда, где тела не притягиваются, а отталкиваются.

2.3. Отрицательное давление и гравитационное отталкивание

Э.Б. Глинер [12] в 1965 году ввёл понятие вакуумоподобного состояния вещества с отрицательным давлением p, положительной плотностью энергии ε с уравнением состояния $\varepsilon=-p$. Под отрицательным давлением он понимал внутренние объёмные силы в материи, определяющие не силы отталкивания (как и для среды, доступной для наблюдения, состоящей из частиц), а силы притяжения.

Отрицательное давление считается атрибутом тёмной энергии, понятие о которой появилось в космологии в конце XX века. Оно приводит к появлению отталкивающих гравитационных сил, о которых «неспециалисты иногда говорят как об антигравитации» [13]. Лучше говорить о космологической антигравитации, обеспечивающей инфляцию Вселенной, т. е. её ускоренное расширение вопреки (притягивающим) силам гравитации.

Как давление может быть отрицательным?

Давление обычного вещества, как известно, связано с движением молекул. Ударяясь о стенку сосуда, молекулы газа передают ей свой импульс, отталкивают её, давят на неё. Газ стремится расширить объём своего пребывания.

В среде с отрицательным давлением всё происходит иначе. Аналогией отрицательного давления и порождаемой им антигравитации служит вертикально натянутая резиновая плёнка, зажатая снизу в тиски. Каждый её квадратный сантиметр растянут и стремится сжаться. Плёнка имеет натяжение $p_1 < 0$. Пометим на ней точку A, находящуюся на расстоянии l от тисков. Потянем плёнку сильнее вверх. Натяжение, т. е. отрицательное давление p_2 , по модулю усилится до $|p_2| > |p_1|$. Точка A удалится от тисков ещё дальше вверх, как будто под воздействием силы f, поднявшей точку выше над тисками. Это и есть иллюстрация действия силы антигравитации, поднимающей материальные точки все выше вверх и являющейся естественной силовой характеристикой воздействия среды с отрицательным давлением на материальные точки.

Сходным образом ведут себя галактики во Вселенной под действием отрицательного давления тёмной энергии. Вселенная не сжимается, а ускоренно расширяется. Получается, что материя, среда с очень сильным отрицательным давлением, парадоксальным образом не сжимается, а наоборот, распухает под действием, и это следствие влияния отрицательности кривизны Риччи.

Таким образом, можно ответить на вопрос: почему сильнейшее отрицательное давление вместо сжатия приводит к расширению, или почему вместо падения вниз наблюдается падение вверх? Таковы свойства кривизны пространствавремени, выраженные уравнением Эйнштейна.

Литература

- 1. Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1967.
- 2. Hawking S.W., Penrose R. The Singularities of Gravitational Collapse // Proc. Royal Soc. Lond. A. 1970. Vol. 314. P. 529–548.
- 3. Grøn Ø. Repulsive gravitation and electron models // Phys. Rev. D. 1985. V. 31, No. 8. P. 2129–2131.
- 4. Tolman R.C. On the Use of the Energy-Momentum Principle in General Relativity // Phys. Rev. 1930. V. 35, Iss. 8. P. 875–895.
- 5. Cohen J.M., Cohen M.D. Exact Fields of Charge and Mass Distributions in General Relativity // Nuovo Cimento. 1969. V. 60. P. 241–248.
- 6. Эйнштейн А. Собрание научных трудов. Т. 2. М.: Наука, 1966.
- 7. Khamehchi M.A., Hossain Kh., Mossman M.E., Zhang Y., Busch Th., McNeil Forbes M., Engels P. Negative-Mass Hydrodynamics in a Spin-Orbit-Coupled Bose-Einstein Condensate // Phys. Rev. Lett. 2017. V. 118. P. 155301; arXiv:1612.04055.
- 8. Мостепаненко В.М., Трунов Н.Я. Эффект Казимира и его приложения // УФН. 1988. Т. 156, вып. 3. С. 385–426.
- 9. Гребенников В.С. Мой мир. Новосибирск : Советская Сибирь, 1997.
- 10. Munday J.N., Capasso F., Parsegian V.A. Measured long-range repulsive Casimir–Lifshitz forces // Nature. 2009. No. 457. P. 170–173.
- 11. Bostrom M., Sernelius Bo E., Baldissera G., Persson C., Ninham B.W. Casimir-Lifshitz interaction between ZnO and SiO_2 nanorods in bromobenzene turns repulsive at intermediate separations due to retardation effects // Phys. Rev. 2012. A85. P. 044702. arXiv.org (arXiv:1612.04055).
- 12. Глинер Э.Б. Алгебраические свойства тензора энергии-импульса и вакуумоподобные состояния вещества // ЖЭТФ. 1965. Т. 49(8). С. 542–548.
- 13. Лукаш В., Михеева Е. Тёмная энергия Вселенной // Вокруг света. 2008. № 9.

ON SOURCES OF ANTIGRAVITATION

A.K. Guts

Dr.Sc. (Phys.-Math.), Professor, e-mail: guts@omsu.ru

Dostoevsky Omsk State University

Abstract. The formula for the "gravitational" force in a constant static spherical-symmetric space-time, allowing to describe the change of gravity to antigravity, is given. Possible sources of antigravitation are analyzed.

Keywords: antigravitation, source of antigravitation.

Дата поступления в редакцию: 23.08.2017